Η αρχή αβεβαιότητας χρόνου-ενέργειας

A. Διατύπωση και φυσικό περιεχόμενο

Κατ’ αναλογίαν με τη σχέση αβεβαιότητας θέσης-ορμής Δx·Δp ≈ ℏ (στην προσεγγιστική της μορφή), ισχύει επίσης η σχέση αβεβαιότητας χρόνου-ενέργειας Δt·ΔΕ ≈ ℏ με τη διαφορά ότι η "αβεβαιότητα χρόνου" Δt δεν έχει το ίδιο φυσικό περιεχόμενο με τα Δx, Δp ή ΔΕ αλλά αντιπροσωπεύει ένα εγγενές προκειμένου του ιδίου του φυσικού συστήματος. Είναι ο χαρακτηριστικός χρόνος της εξάλειψης του. Δηλαδή ο χρόνος της ντροπής ή καταστάσεως του. Στο πεδίο αυτός της ερμηνείας -όπου Δt = τ- η σχέση αβεβαιότητας χρόνου-ενέργειας (στην προσεγγιστική της μορφή) γράφεται ως

\[
τ \cdot ΔΕ \approx ℏ
\]

και το φυσικό της νόμιμη διατυπώνεται με λόγια ως:

Όσο πιο αργά μεταβάλλεται ένα φυσικό σύστημα (τ μεγάλο) τόσο πιο καλά καθορισμένη είναι η ενέργειά του (ΔΕ μικρό). Και αντιστοιχα: όσο πιο γρήγορα είναι ο ρυθμός μεταβολής του (τ μικρό) τόσο πιο μεγάλη είναι η αβεβαιότητα στην ενέργειά του (ΔΕ μεγάλο).

B. Εφαρμογή στις λύσεις της χρονονεξάρτητης εξίσωσης Schrödinger: Στασίμες καταστάσεων

Στην περίπτωση των λύσεων της χρονονεξάρτητης εξίσωσης Schrödinger, για τις οποίες είναι ΔΕ = 0 όπως γνωρίζουμε (βλ. Φυσικός 13) η (1) δίνει τ = ∞, το οποίο σημαίνει ότι για τις καταστάσεις που περιγράφονται από αυτές τις λύσεις η χρονική εξάλειψη δεν έχει μετρήσιμες συνέπειες από όπου και η ονομασία τους ως στασίμες καταστάσεων. Πράγματι αυτό έπειτα αμέσως από τη λύση της χρονονεξάρτητης εξίσωσης Schrödinger (βλ. Κβαντομηχανική I, σ. 111-116, 140-143) που συνεπάγεται ότι οι λύσεις ψn(x) της χρονονεξάρτητης εξίσωσης μεταβάλλονται με το χρόνο ως

\[
ψ_n(x, t) = ψ_n(x)e^{-iE_nt/ℏ} \quad (χρονική εξάλειψη των καταστάσεων καθορισμένης ενέργειας)
\]

όπτε θα είναι \(|ψ_n(x, t)|^2 = |ψ_n(x)|^2\) και η χρονική εξάλειψη πραγματικά δεν θα έχει μετρήσιμες συνέπειες, όπως σωστά προβλέπει η σχέση (1).

C. Και μια θεμελιώδης συνέπεια: Διαπλάτυνση των ενεργειακών σταθμών των διεγερμένων καταστάσεων

Ομος η προηγούμενη εικόνα δεν είναι αυστηρά σωστή για τις διεγερμένες καταστάσεις (π.χ. των ηλεκτρονίων στα άτομα ή τα μόρια) οι οποίες λόγω της αυθόρμητης αποδιέγερσης -που οφείλεται στην κβαντική φύση του ΗΜ πεδίου- δεν είναι αυστηρά στασίμες, αρουρά ύστερα από έναν μέσο χρόνο τ = τρ το άτομο απαντάεται και άρα δημιουργείται μια εμφανής αλλαγή στην κατάστασή του. Σε αυτή λοιπόν την πιο ακτινοβολική περιγραφή των καταστάσεων όπου δεν είναι πια τ = ∞ αλλά τ = πεπερασμένο, η ενέργεια δεν θα είναι αυστηρά καθορισμένη αλλά θα έχει μια απροσδιόριστη ΔΕ περίπου ίση με ℏ/τ, όπου τ ο μέσος χρόνος ζωής του ηλεκτρονίου στη συγκεκριμένη στάθμη. Αυτή η διαπλάτυνση των ενεργειακών σταθμών εκθέτεται άμεσα στο παρατηρούμενο φάσμα του οποίου οι συλλογές δεν είναι πλέον αυστηρά καθορισμένες αλλά εμφανίζουν μια διαπλάτυνση Δf = ΔΕ/ℏ ≈ 1/τ. Όλα τα παραπάνω συνοψίζονται πλήρως στο ακόλουθο σχήμα:

\[
ΔΕ \approx ℏ/τ \neq 0 \quad \text{Διαπλάτυνση στάθμης} \quad (τ = πεπερασμένο)
\]

\[
ΔΕ = 0 \quad \text{Θεμελιώδης στάθμη} \quad (τ = ∞)
\]

Δύο ενδεδειγμένες ενεργειακές στάθμες και οι διαπλατύνσεις τους. Οι διεγερμένες στάθμες έχουν πεπερασμένο χρόνο ζωής, άρα και πεπερασμένο εύρος, ενώ η θεμελιώδης έχει άπειρο χρόνο ζωής και άρα μηδενικό εύρος.

ΜΕΛΕΣ: Σ. ΤΡΑΧΑΝΑΣ, KBANTOMIHRANIKI I, σ. 191-195.